Faster and more comprehensive characterization of materials
Based on over 50 years of experience in thermogravimetry, NETZSCH has developed the thermobalance TG 209 F1 Libra®. This instrument allows for analyses to be carried out even faster, more accurately, and across an extended temperature range.
Twice as fast by means of BeFlat®
In contrast with other thermobalances, no time-consuming baseline determinations need normally to be carried out with the TG 209 F1 Libra® prior to a measurement. The unique BeFlat® function of the Libra automatically compensates for any external factors influencing the measurement. This cuts work hours by up to 50%, leaving more time available, for example, for further measurements.
20 times faster due to high heating rates
The heart of the TG 209 F1 Libra® is the micro furnace made of high-performance ceramics. It not only allows for a wider sample temperature range of up to 1100°C, but also for heating rates of up to 200 K/min. The user can thus receive the results of the analysis – even at highest temperature – within a few minutes, i.e. 20 times faster than for other thermobalances.
More comprehensive and faster characterization by patented c-DTA®
With the TG 209 F1 Libra®, the sample temperature is measured directly. Endo- and exothermal reactions can now be detected and show, for example, the melting point of the sample, in the evaluation. This yields considerably more information on the sample behavior without having to carry out further measurements.
High-performance ceramics for a long lifespan
The lifespan of the new, especially designed ceramic furnace – even when investigating materials containing corrosive components – is many times longer than that of conventional thermobalances. The analysis of fluorinated or chlorinated polymers is therefore no problem. The reaction and purge gases flow in the natural, vertical direction. Condensation on measure-relevant components (sample holders) can therefore be excluded. This not only is gentle on the material, but also prevents occurrence of the dreaded memory effect which can distort subsequent measurements in conventional systems.
Request InformationData Sheet
Brochure
TG 209 F1 Libra with ASC
The TG 209 F1 Libra® runs under Proteus® software on Windows®. The Proteus® software includes everything you need to carry out a measurement and evaluate the resulting data. User-friendly menus combined with automated routines make Proteus® very easy to use while still providing sophisticated analysis. The Proteus® software is licensed with the instrument and can of course be installed on other computer systems.
You can use the following software with this product:
Proteus® Software, Advanced Software
TGA features:
The TG 209 F1 Libra® is equipped with a cooling thermostat to guarantee highest long term stability, start measurements under room temperature and allow quick cooling of the micro furnace.
The TG system with an automatic sample changer can handle up to 192 crucibles/pans evenly distributed on two removable trays. Different types of crucibles/pans are allowed up to 8 mm Ø in and 8 mm in height. A four-needle gripper handles different crucibles by using the appropriate gripping pressure for the chosen pan. For calibration and correction purposes, a fixed strip with additional 12 crucible/pan positions is available. Crucible/pan recognition in flight is available. A crucible/pan and lid data base is linked to the ASC. The sample trays are covered by an automatically controlled cover. After closing the cover, the space above the sample pans is purged by branching gas channels integrated in the cover. The purge gas rate is adapted to opening and closing the cover. For this purpose, a further purge gas inlet is available only for the use with the ASC. A “remove lid” function is integrated to cover the sample while waiting its turn to be inserted into the TG cell. Alternatively, a piercing device is optionally available for piercing the lid prior to measurement. The TG system has a refuse bin for disposing lids and non-reusable pans. It is possible to archive the micro-plate trays (storage sample). For better identification, the plates have a serial number and 2D code. The tray identification feature is linked to a crucible/lid data base.
Different vacuum pumps in connection with the prepared automatic evacuating and filling system, AutoVac, make measurements at a reduced pressure or in a pure, oxygen-free atmosphere possible.
There are numbers of different crucibles (pans) of aluminum oxide, platinum, aluminum, graphite and fused silica available in different sizes up to 350 µl.
For unstable samples or samples with volatile components, an automatic piercing device is available for the ASC which opens the sealed crucible (pan) just prior to the start of measurement.
Different calibration sets are available and cover the entire temperature range of 10°C to 1100°C. The calibration substances are prepared for measurement in accordance with ASTM and CEI-IEC standards.
The TG 209 F1 Libra® can be coupled to the Quadrupole Mass Spectrometer QMS 403 D Aëolos® and/or to an FT-IR Spectrometer or to a GC-MS. Gases released are conducted via a heated fused silica capillary or transfer line directly into the gas analyzer, where the volatile fragments can be detected down to the ppm-range during the decomposition of the sample.
PERSEUS® TG 209 F1
Application literature
Application literature
Application literature
Application literature
Show more
Accessories Catalogue
Crucibles, Sensors, Sample Carriers, Calibration Kits for DSC, TGA and STA Systems
Brochure
Product brochure: Thermogravimetry; Method, Technique, Applications, 20 pages
Brochure
Application brochure: Research and Development - Substances, Components, Quality Control and Process, Extrusion, Injection Molding, Coating, Quality Assurance - Finished Goods, Material Properties and Main Measuring Methods; 8 pages
Brochure
Application brochure: Thermoplastics, Thermoplastic Elastomers, Elastomers and Thermosets, 36 pages
Poster
Our poster “Thermal Properties of the Elements” shows the following values at a glance: melting point, boiling point, specific heat, heat of fusion, thermal expansion coefficient, thermal conductivity and density.
Poster
Our poster “Thermal Properties of Polymers” offers the following characteristic values at a glance: Glass transition temperature, heat of fusion and melting temperature, decomposition temperature, E modulus, coefficient of thermal expansion, specific heat capacity, thermal conductivity and density.
Video
The thermobalance TG 209 F1 Libra® allows for analyses to be carried out even faster, more accurately, and across an extended temperature range up to 1100°C sample temperature.
(length: 02:04 min)
Video
Due to the new High Speed furnace results can be obtained up to 20 times faster. In this Application Video Calcium Oxalate is characterized to explain why the new Thermogravimetric Analyzer TG 209 F1 Libra® is superior. (length: 02:44 min)
Video
This Application Video explains why it is important to achieve 1100°C sample temperature when analyzing MICA, a sheet silicate. The new TG 209 F1 Libra® has a high tech ceramic furnace that allows for a true sample temperature of 1100°C. (length: 03:11 min)
Video
When the plasticizer content of a polymer is determined true vacuum plays an important role. In this Application Video SEBS is characterized under Nitrogen atmosphere and under vacuum. Due to the vacuum-tight design of the new TG 209 F1 Libra® the plasticizer content can be determined exactely. (length: 03:13 min)
20 03 2013 netzsch libra ton EN
NETZSCH TG 209 F1 Libra for Thermogravimetric Analysis
NEW TG 209 F1 Libra® - Thermo-Microbalance (Thermogravimetric Analyzer)
Show more
NETZSCH Webinar-Quality improvements in plastic parts through powerful thermo-analytical methods
NETZSCHWebinar-Characterization of Food
NETZSCH Webinar Understand the Properties of Polymer Compounds by Thermal Analysis
NETZSCH Webinar Thermogravimetric Analysis
NETZSCH-WebinarKey Thermal Analysis Techniques for Battery Material Development and Testing
NETZSCH-WebinarThermal Analysis Methods Perfect for the Characterization of Wood-Plastic Composites
NETZSCH-WebinarThermogravimetric Analysis TGA Basics and Applications
NETZSCH-Webinar Thermal Analysis Goes Green Applications in the Field of Renewable Energies
NETZSCH-Webinar Thermal Analysis Under Humid Atmospheres
NETZSCH-Webinar Zlepov
DSC 204 F1 Phoenix®